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Abstract: Aerosols significantly impact the brightness temperature (BT) in thermal infrared
(IR) channels, and ignoring their effects can lead to relatively large observation-minus-
background (OMB) bias in radiance calculations. The accuracy of aerosol datasets is
essential for BT simulations and bias reduction. This study incorporated aerosol reanaly-
sis datasets from the Modern-Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA-2) and Copernicus Atmosphere Monitoring Service (CAMS) into the
Advanced Radiative Transfer Modeling System (ARMS) to compare their impacts on BT
simulations from the Geostationary Interferometric Infrared Sounder (GIIRS) and their
effectiveness in reducing OMB biases. The results showed that, for a sandstorm event
on 10 April 2023, incorporating total aerosol data from the MERRA-2 improved the BT
simulations by 0.56 K on average, surpassing CAMS’s 0.11 K improvement. Dust aerosols
notably impacted the BT, with the MERRA-2 showing a 0.17 K improvement versus CAMS’s
0.06 K due to variations in the peak aerosol level, thickness, and column mass density.
Improvements for sea salt and carbonaceous aerosols were concentrated in the South China
Sea and Bay of Bengal, where the MERRA-2 outperformed CAMS. For sulfate aerosols, the
MERRA-2 excelled in the Bohai Sea and southern Bay of Bengal, while CAMS was better
in the northern Bay of Bengal. These findings provide guidance for aerosol assimilation
and retrieval, emphasizing the importance of quality control and bias correction in data
assimilation systems.
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1. Introduction

Over the past half-century, numerical weather prediction (NWP) has made significant
advancements, greatly enhancing forecasting accuracy [1,2]. Recently, incorporating at-
mospheric components, including aerosols, into NWP has become a key direction in the
development of Earth system numerical prediction [3,4]. Atmospheric aerosols, composed
of absorbing and scattering components, originate primarily from natural and anthro-
pogenic emissions and are further generated through secondary chemical reactions. They
significantly impact the energy exchange within the Earth-atmosphere system by absorbing
and scattering solar radiation, exerting profound effects on the climate system [5-9]. As a
crucial yet often overlooked driver in NWP, the radiative effects of aerosols can introduce
temperature biases and critically influence the accuracy of other meteorological parameter
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forecasts [10]. Therefore, precise aerosol datasets and a comprehensive evaluation of aerosol
radiative effects are of both scientific and practical importance for effectively incorporating
aerosols into NWP [11,12].

Meteorological satellite data serve as a crucial source of observations for NWP and
are among the key factors driving advancements in NWP. The assimilation of satellite
observations significantly enhances NWP accuracy [13,14]. Fast radiative transfer models
(RTMs) serve as observation operators in data assimilation, retrieval, and other satellite re-
mote sensing applications, linking atmospheric physical parameters with satellite-observed
radiation. The simulation accuracy of the RTMs used directly impacts the effectiveness of
assimilating observational data in NWP and plays a pivotal role in the accuracy of satellite
retrievals. In the infrared (IR) region, the wavelengths are closer to the size of aerosol
particles, resulting in significant scattering effects as they fall into the Mie scattering regime.
This makes IR radiation more susceptible to being influenced by aerosol [15,16], which
not only increases the complexity of the radiative transfer process but also reduces the
simulation accuracy of RTMs.

The brightness temperature (BT) in satellite infrared observations is typically mea-
sured in the long-wave infrared (LWIR) range, which ranges from 8 to 14 um, while the
mid-wave infrared (MWIR) range generally spans from 3 to 5 pm. Aerosols have a particu-
larly significant impact on the 8-12 um infrared window channels, which are sensitive to
aerosol-induced effects. Numerous studies have shown that aerosols significantly affect
BT simulations in the IR region [17-20]. In the Sahara Dust Experiment, downwelling
measurements from the Airborne Research Interferometer Evaluation System (ARIES) indi-
cated that aerosols induced a cooling effect of 2—4 K on BTs in the IR window region [21].
Pierangelo et al. [22] and Peyridieu et al. [23] demonstrated that the atmospheric impact
of dust increases significantly with a higher aerosol optical depth (AOD) and greater dust
altitude. Furthermore, they noted that short-wave IR channels (3-5 um) are more sensitive
to changes in the total AOD, while long-wave IR channels (8-12 pm) exhibit greater sen-
sitivity to the vertical distribution of dust. In sea-surface temperature retrieval, these IR
channels have been extensively utilized to detect and quantify the impact of dust, effec-
tively isolating its interference with the retrieval accuracy [24]. Quan et al. [25] found that,
during mid-latitude summer, the brightness temperature difference (BTD) within the IASI
spectral range of 645-1200 cm ! exhibited the greatest variability, with peak fluctuations
reaching up to 1 K. This indicates that this spectral region is particularly sensitive to aerosol
effects. Wei et al. [26] conducted sensitivity experiments using idealized dust profiles
and reported that the mass loading and altitude of the dust layer are the primary and
secondary factors that influence BT simulations, respectively. In contrast, variations in the
fine-to-coarse particle ratio have a relatively minor impact on BT simulations. Sun et al. [27]
incorporated aerosols from the Copernicus Atmosphere Monitoring Service (CAMS) into
RTTOV to evaluate their impact on BT simulations for the Advanced Himawari Imager
(AHI) aboard the Himawari-8 geostationary satellite. Their findings indicated that, in
dust-dominated regions, accounting for the radiative effects of dust aerosols could correct
BT biases by up to 4 K and reduce observation-minus-background (OMB) biases by up to
0.7 K. These research advancements emphasize the significant impact of dust aerosol prop-
erties on radiance corrections in the infrared region under cloud-free clear-sky conditions
following cloud detection processing. The findings further underscore the critical role of
the aerosol distribution and aerosol properties in obtaining accurate radiance simulations.
However, despite these progressions, significant gaps remain in the understanding of
aerosol distribution, its characteristics, and their radiative effects. Moreover, previous
studies have primarily relied on polar-orbiting satellites to track atmospheric pollution
events, such as dust storms. Due to their limited spatial and temporal resolutions, these
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studies were unable to continuously monitor the dynamic evolution of atmospheric pollu-
tants. In contrast, geostationary satellites offer continuous, high-resolution monitoring. The
Geostationary Interferometric Infrared Sounder (GIIRS) onboard the FY-4 series satellite,
the first high-spectral-resolution infrared atmospheric sounder in a geostationary orbit,
provides continuous three-dimensional observations of the atmospheric temperature and
water vapor under conditions of atmospheric pollution [28].

Aerosols are not only essential to the accuracy of atmospheric retrievals but also
significantly impact satellite radiance observations assimilated in the form of BTs. Ne-
glecting the role of aerosols in radiative calculations can introduce OMB biases [29,30].
Currently, the common approach is to exclude IR observational data affected by clouds and
aerosols [31-33], but this results in the underutilization of valuable spectral information.
Although the impact of clouds on IR radiation is more pronounced, aerosols also signifi-
cantly influence temperature and humidity analyses. Obtaining accurate aerosol datasets is
crucial for the precision of BT simulations, as it determines whether aerosols play a positive
role in the simulation process or contribute to the introduction of bias. Aerosol reanalysis
datasets provide global information on aerosol concentration, distribution, and variation,
covering all oceanic regions and filling gaps that site-specific data cannot address, and thus
offering a more comprehensive basis for research [34]. To date, no study has separately
incorporated different aerosol reanalysis datasets into the Advanced Radiative Transfer
Modeling System (ARMS) to compare their respective effects on the improvement in BT
simulations and OMB biases for the GIIRS on the FY-4B satellite. For a sandstorm event on
10 April 2023, this study designed three experiments: Experiment 1 involved BT simulation
calculations without aerosol, serving as a baseline reference. Experiment 2 and experiment
3 introduced aerosol from the Modern-Era Retrospective Analysis for Research and Ap-
plications, Version 2 (MERRA-2) and the CAMS into the ARMS, respectively, to compare
and quantitatively assess the impact of the aerosol from both datasets on BT simulations.
Additionally, the experiments further compared and analyzed the specific contributions
of different aerosol types in the MERRA-2 and CAMS to the BT simulations. This work
not only provides guidance for the use of accurate aerosol datasets in subsequent data
assimilation and retrieval studies but also lays the foundation for incorporating aerosol
radiative properties into NWP.

The structure of this paper is as follows: Section 2 introduces the datasets used in
this study and the fast RTM. Section 3 provides a detailed description of the setup for the
three experiments. Section 4 presents a comparison and analysis of the results from the
three experiments, and, finally, the conclusions and discussion are presented in Section 5.

2. Model and Dataset
2.1. Advanced Radiative Transfer Modeling System (ARMS)

As a forward operator, ARMS takes into account both atmospheric conditions and the
characteristics of satellite instruments, including those from the NOAA (National Oceanic
and Atmospheric Administration) and EUMETSAT (European Meteorological Satellite
Organization) satellite series, as well as the Fengyun satellite series. In addition, ARMS
incorporates capabilities from other fast RTMs used in U.S. and European satellite programs.
The system allows for the integration of additional radiative transfer modules, which can
be applied to a wide range of sensors [35,36], enabling the more accurate simulation of
radiance measurements ARMS includes a fast transmittance module, updated particle
absorption and scattering tables, a surface emissivity component, and a polarized radiative
transfer solver.

This study focuses on using ARMS’s aerosol module for sensitivity experiments.
ARMS simulates different aerosol types using an aerosol transport model, covering the
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optical properties of dust, sea salt, carbonates (black carbon and organic carbon), and
sulfates. Particle absorption and scattering are key components of fast RTMs. ARMS
incorporates the latest advancements in aerosol particle optical property parameterization.
The model uses a superellipsoid approach to represent aerosol particles, offering more
accurate optical properties compared to traditional spherical models, and allowing for
a more accurate representation of the geometric shapes of real atmospheric particles.
This, in turn, enables a more precise calculation of their optical properties, enhancing the
accuracy of the model. The single-scattering properties of the super-spheroids are calculated
using the invariant imbedding T-matrix method [37,38] and an improved geometric optics
method [39]. The super-spheroid model provides a unified approach that is applicable to
different types of aerosols, such as sulfates, sea salt, and dust [40,41], enhancing the model’s
applicability and accuracy in simulating different aerosol types. ARMS uses precomputed
lookup tables to calculate the optical properties of aerosols, particularly their extinction
coefficients, single scattering albedos, asymmetry factors, and phase function coefficients.
In practical applications, by specifying the aerosol type, effective radius, and column mass
density, ARMS can generate the aerosol optical profiles required for radiative transfer
solvers. These optical profiles are used for multiple scattering simulations, radiative
calculations, and the evaluation of the AOD.

2.2. MERRA-2 Dataset

The MERRA-2 is a next-generation reanalysis dataset developed by NASA based on
the Goddard Earth Observing System, Version 5 (GEOS-5) Earth system model [42] and
the Gridpoint Statistical Interpolation (GSI) assimilation system [43,44]. The MERRA-2
enhances the accuracy of its analysis by assimilating bias-corrected AOD observations
from the ground-based aerosol robotic network (AERONET), the Multi-angle Imaging
Spectroradiometer sensor (MISR), the Moderate Resolution Imaging Spectroradiometer
(MODIS), and the Advanced Very High Resolution Radiometer (AVHRR). The accuracy of
the MERRA-2’s three-dimensional aerosol data has been validated through comparisons
with multiple datasets, including Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO), ground-based AERONET network observations, and MODIS
observations [45—47]. The high correlation with these datasets indicates the high reliability
of the MERRA-2 aerosol data.

The three-dimensional aerosol dataset from the MERRA-2 covers a period from
10 April 2023, and is used as the input to ARMS. The dataset includes dust with five particle
size bins (radii of 0.1-1.0, 1.0-1.8, 1.8-3, 3-6, and 6-10 um), sea salt with four particle size
bins (radii of 0.1-0.5, 0.5-1.5, 1.5-5, and 5-10 pum), sulfate, hydrophilic and hydrophobic
organic/black carbon aerosols, and sulfate aerosols (with their hydrophilic and hydropho-
bic forms being indistinguishable in ARMS). The data have a temporal resolution of three
hours and a spatial resolution of 0.625° x 0.5°, with 72 vertical model layers. Specifically,
the aerosol mixing ratios are interpolated spatially and temporally to the observation
points of the GIIRS and then converted to column mass density values suitable for ARMS
simulations. Additionally, the effective radius of different aerosol types at the observation
points is determined by the local atmospheric conditions.

2.3. CAMS Dataset

The CAMS reanalysis dataset is the latest global atmospheric composition reanalysis
product produced by the European Centre for Medium-Range Weather Forecasts (ECMWF).
It provides three-dimensional, temporally consistent atmospheric composition fields, in-
cluding aerosols and chemical components. The CAMS assimilates AOD retrieval data
from the advanced along-track scanning radiometer (AATSR) onboard the Envisat satellite,
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and from the MODIS sensors aboard NASA’s Aqua and Terra satellites [48]. Several studies
have validated CAMS’s aerosol data, with Ansari and Ramachandran [49] reporting a high
correlation of over 80% between the CAMS AOD and AERONET data in Asia, including
South Asia, Southeast Asia, and East Asia. Liu et al. [50] demonstrated that the CAMS
shows good consistency with MODIS data across all time scales.

This study utilizes the CAMS three-dimensional aerosol datasets from 9 to 10 April
2023, which includes sea salt (with three bins: 0.03—-0.5 um, 0.5-5 um, and 5-20 um), dust
(with three bins: 0.030-0.55 pm, 0.55-0.9 um, and 0.9-20 pm), hydrophilic and hydrophobic
organic carbon (OC), black carbon (BC), and sulfate aerosols. In ARMS, the distinction
between hydrophilic and hydrophobic organic carbon is not made. The CAMS data have a
temporal resolution of three-hour intervals and a spatial resolution of 0.75° x 0.75°, with
60 vertical model layers. As with the interpolation method used for the MERRA-2, the
aerosol mixing ratios for each type of aerosol are spatially and temporally matched to the
corresponding GIIRS observation locations and converted to column mass density units
suitable for ARMS simulations. The standard Lorenz-Mie algorithm is used to calculate
the properties of each aerosol species, assuming external mixing. In this approach, each
aerosol species is considered to coexist within the same air volume, retaining its individual
optical and chemical properties, and the contributions of each species are corrected based
on their relative proportion to the total aerosol [51,52].

2.4. FY-4B GIIRS Data

The FY-4B satellite, launched on 3 June 2021, as a satellite service, features significant
advancements over its predecessor, FY-4A, in its spectral, temporal, and spatial resolution,
as well as its calibration accuracy. The GIIRS onboard FY-4B observes atmospheric outgoing
radiance in the long-wave infrared (LWIR, 8.8-14.7 pym or 680-1130 cm 1) and mid-wave
infrared (MWIR, 4.4-6.1 um or 1650-2250 cm ') bands. These observations are designed to
support applications such as the retrieval of three-dimensional atmospheric temperature
and humidity fields data and data assimilation for NWP models [53]. Each field-of-regard
(FOR) of the FY-4B/GIIRS has 128 detectors. The FY-4B/GIIRS has 8 detectors in the
east-west direction and 16 detectors in the north-south direction, as shown in Figure 1a.

The FY-4B/GIIRS level 1 data on 10 April 2023, are provided by the National Satellite
Meteorological Center. The comparison between the observation and the BT simulation
by the ARMS was conducted over an oceanic region spanning from 80°E to 140°E and
from 3°N to 50°N, with a spatial resolution of 12 km x 12 km. Since IR hyperspectral
radiation is highly sensitive to cloud interference, only clear-sky and aerosol conditions
were considered for this study. The cloud detection was performed on the observational
data using the cloud mask product from FY-4B/AGRI. Figure 1b shows the BT distribution
for channel 496 (990 cm~!) before cloud detection. Figure 1c,d illustrate the BT distributions
of FY-4B/the GIIRS after spatial and temporal matching with the CAMS and MERRA-2
datasets and subsequent cloud detection. A total of 4209 points were matched with the
CAMS and 7500 points with the MERRA-2. The difference is primarily attributable to the
slightly higher spatial resolution of the MERRA-2 compared to the CAMS, although both
datasets share the same temporal resolution.
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Figure 1. (a) The FOR of FY-4B/GIIRS during the scanning period from 11:33 to 11:38 (UTC) on
April 10, 2023; (b) the spatial distribution observed by FY-4B/GIIRS level 1 data from channel 498
(990 cm™1) prior to cloud detection; (c) the spatial distribution of BT observed by FY-4B/GIIRS
channel 498 (990 cm 1) after matching with CAMS and before cloud detection; and (d) the spatial
distribution of BT observed by FY-4B/GIIRS channel 498 (990 cm™1) after matching with MERRA-2
and before cloud detection.

Figure 2 illustrates the severe dust storm event that occurred on 10 April 2023, as a
result of a Mongolian cyclone. The intensification of the cyclone in April promoted the
eastward transport of aerosols from western Inner Mongolia and southern Mongolia. Dust
aerosols originating from the Gobi Desert affected not only northern and northeastern China
but also extended to the coastal regions of the Bohai Sea and the Sea of Japan. Figure 2a
presents dust fraction data from the FY-4B/ AGRI DST product, with pixels exhibiting a
dust fraction greater than or equal to 16 considered as dust pixels. Figure 2b shows the total
AOD at 550 nm from Visible Infrared Imaging Radiometer Suite (VIIRS)/NOAA-20, while
Figure 2c,d display dust the AOD at 550 nm from the CAMS and MERRA-2, respectively. It
can be observed that the overall trend is consistent across the datasets.
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Figure 2. (a) The FY-4B/AGRI DST product at 04:00 UTC on 10 April 2023. (b) Visible Infrared
Imaging Radiometer Suite (VIIRS)/NOAA20 550 nm total AOD. (c,d) Dust AOD at 550 nm from
CAMS and MERRA-2, respectively.

3. Experiment Design
3.1. Data Pre-Processing

Figure 3a illustrates the AOD distribution at a wavelength of 550 nm as observed by the
VIIRS. VIIRS/NOAA-20 provides high-quality AOD data through its multispectral imaging
capabilities, supporting global aerosol monitoring. The comparisons with the CAMS and
MERRA-2 data, shown in Figure 3b,c, reveal consistency in the spatial distribution of high
AOD among the datasets. Notably, elevated AOD levels are observed over the Bohai Sea
and adjacent northeastern land regions, as well as in northwestern coastal regions of the
South China Sea. These findings underscore the significant impact of the dust storm event
on the aerosol distribution in the area.
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Figure 3. Spatial distribution of AOD estimated at 550 nm over land and ocean on 10 April 2023:
(a) VIIRS/NOAAZ20, (b) CAMS, (c) MERRA-2.

The experimental design for conducting BT simulations using ARMS with the CAMS
and MERRA-2 aerosol reanalysis data is depicted in Figure 4. In this study, the fifth-
generation ECMWF atmospheric reanalysis data (ERA5) were used to determine atmo-
spheric parameters such as the temperature, humidity, ozone, and pressure, as well as
surface parameters like the surface temperature and 10 m wind direction and speed, all
of which were input into ARMS. The ERA5 atmospheric and surface parameters have a
horizontal resolution of 0.25° x 0.25°, with an hourly temporal resolution. The atmospheric
profiles cover pressure levels from 1000 hPa to 1 hPa, with a total of 137 vertical layers.
Additionally, geometric parameters from the GIIRS were used, including the latitude, lon-
gitude, solar azimuth angle, solar zenith angle, sensor azimuth angle, and sensor zenith
angle. The MERRA-2 and CAMS provide dust, sea salt, sulfate, and carbonate aerosols in
the AER_CAMS and AER_MERRA-2 experiments, respectively. Therefore, in the ARMS
input profiles, the aerosol profiles come from different data sources, while the atmospheric
parameters such as the atmospheric temperature, humidity, ozone, and pressure profiles, as
well as surface parameters like the surface temperature and 10 m wind direction and speed,
are all derived from ERA5 reanalysis data. The geometric parameters are obtained from
the FY-4B/the GIIRS level 1 data. To account for differences in data resolution among the
CAMS, MERRA-2, GIIRS, and ERAS5, spatiotemporal matching was performed. To convert
the three-dimensional aerosol mixing ratio (kg/kg) from the MERRA-2 and CAMS reanaly-
sis into the aerosol mass density (kg/m?) for ARMS, we conducted unit transformations
following the methodology of Buchard et al. [45]. Three experiments were designed for
this study:

(@) Control (CTRL) experiment: a baseline reference experiment conducted without
incorporating aerosol (aerosol-blind configuration);

(b) Aerosol from the CAMS (AER-CAMS) experiment: incorporates aerosol data from the
CAMS reanalysis into the ARMS, considering dust, sea salt, sulfate, and carbonaceous
aerosols separately, as well as a scenario where all four aerosol types are considered
together;

(c) Aerosol from the MERRA-2 (AER-MERRA-2) experiment: incorporates aerosol data
from the MERRA-2 reanalysis into the ARMS, considering dust, sea salt, sulfate,
and carbonaceous aerosols separately, as well as a combined scenario with all four
aerosol types.

This study aims to compare and quantitatively evaluate the impact of the aerosols from
the two datasets on the TOA of BT simulations. Additionally, to investigate the influence of
different aerosol types within the datasets on the simulation results, four aerosol types were
selected for analysis. It is important to note that the CAMS provides three bins for both dust
and sea salt aerosols, whereas the MERRA-2 includes five bins for dust aerosols and four
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bins for sea salt aerosols. In this study, aerosols of different particle sizes were aggregated,
and the merged aerosol profiles were utilized as input data for the ARMS model.

(a) CTRL
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Figure 4. Diagram illustrating the experimental design: (a) the aerosol-blind experiment (CTRL),
(b) the aerosol-aware experiment (AER_CAMS) using datasets from CAMS, and (c) the aerosol-aware
experiment (AER_MERRA) using datasets from MERRA-2.

3.2. Aerosol Distribution

Figure 5 illustrates the spatial distribution of the aerosol column mass density over the
oceanic region within FY-4B/the GIIRS observational domain on 10 April 2023, as derived
from the CAMS and MERRA-2 datasets. In April 2023, a dust storm originating from the
Mongolian Plateau propagated southeastward, reaching the Bohai Sea on 10 April. Accord-
ingly, Figure 5a,b indicate that the regions of high column mass density, encompassing four
aerosol types, were concentrated over the Bohai Sea. Specifically, the region with the largest
column mass density in the CAMS dataset was located in the southern Bohai Sea near the
Yellow River estuary, with a maximum value of 1.26 x 103 kg/m?. In contrast, the region
with the largest column mass density in the MERRA-2 dataset was located near the land
area of the Bohai Strait, with a value of 1.06 x 1073 kg/ m?2.
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Figure 5. The spatial distribution of aerosol column mass density over the ocean within the FY-
4B/GIIRS observation range on 10 April 2023, as derived from CAMS and MERRA-2. Panels
(a,b) depict the total aerosol column mass density (sum of dust, sea salt, sulfates, and carbonaceous

aerosols) from CAMS and MERRA-2, respectively. Panels (c—j) illustrate the spatial distribution of

column mass densities for different aerosol types from the two datasets.
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Additionally, the MERRA-2 identified a larger area of elevated aerosol column mass
density near the Sea of Japan, whereas the corresponding values in the CAMS dataset
were relatively lower. Ukhov et al. found that the CAMS, compared to AERONET data,
overestimates the volume of fine particles with radii ranging from 0.55 to 0.9 um, while
underestimating the volume of coarse particles with radii ranging from 0.9 to 20 pm [54].
Shukla et al. pointed out that the variability of dust and PM10 in the MERRA-2 reanalysis
is relatively closer to that in the observed data. This study is consistent with previous
analyses [55,56]. Comparing Figure 5b,c, it is evident that dust aerosols account for over
80% of the total aerosol column mass density. Although the spatial distribution of sea salt
aerosols is generally consistent across both datasets, the concentration of sea salt in the
CAMS dataset is approximately twice that in the MERRA-2. Both datasets show regions
with high column mass density of sea salt aerosols in the South China Sea. In the CAMS, the
high column mass density region is located at the southernmost part of the South China Sea,
with a maximum value of 1.91 x 10~# kg/m?, whereas, in the MERRA-2, the high-density
region is located in the central part of the South China Sea, with a maximum value of
7.87 x 107> kg/m?. This difference can be attributed to the complex oceanic dynamic
processes in the South China Sea, including frequent internal waves, intense typhoons, and
storm surges, which exacerbate wave breaking. Additionally, contributions from terrestrial
activities further enhance the generation of sea salt aerosols [57]. Although oceanic dynamic
processes and terrestrial contributions are likely the primary drivers of the observed spatial
differences, discrepancies between the MERRA-2 and CAMS may also arise from differences
in their assimilation systems, retrieval algorithms, and models. The MERRA-2 exhibits a
higher sea salt aerosol column mass density in the Bay of Bengal compared to the CAMS.
For sulfate aerosols, the CAMS reports column mass densities that are approximately
twice those of the MERRA-2. However, the overall distribution trends of both datasets
are generally consistent, with higher values concentrated in the Bohai Sea. The maximum
sulfate aerosol mass density observed in the CAMS is 1.05 x 10~* kg/m?, while that of the
MERRA-2 reaches a maximum of 5.75 x 107> kg/m?. Shukla et al. found that both the
CAMS and MERRA-2 tend to reproduce the overall observed variability in sulfate and sea
salt (r = 0.76-0.86), and apart from winter, the CAMS reports higher sulfate concentrations
compared to the MERRA-2 [58]. The distributional similarity between sulfate and dust
aerosols suggests that, in regions impacted by intense dust storms, both the dust aerosol
and sulfate aerosol column mass densities tend to be higher. This phenomenon may be
attributed to the substantial increase in fine particles caused by secondary dust resuspension
in regions affected by dust storms, as well as the secondary formation of sulfate and organic
aerosols and their heterogeneous reactions on particle surfaces. Secondary maxima of
sulfate aerosols are observed in the northern Bay of Bengal near coastal regions. The
distribution of carbonaceous aerosols is predominantly concentrated in the South China
Sea and parts of the Bay of Bengal. The maximum carbonaceous aerosol column mass
density in the MERRA-2 data is 1.6 x 10~* kg/m?, whereas the CAMS reports a maximum
of 9.12 x 10~° kg/m? in the South China Sea. The magnitude in the MERRA-2 data is
twice that of the CAMS, suggesting that the CAMS likely underestimates carbonaceous
aerosol concentrations compared to the MERRA-2. The CAMS exhibits high-value regions
of carbonaceous aerosol column mass density in the Bohai Strait and the northeastern Bay
of Bengal near coastal areas. In contrast, the MERRA-2 shows a notable distribution in the
eastern part of the Bay of Bengal.

The regions of maximum column mass density for different aerosol types in both the
CAMS and MERRA-2 play an important role in the forward model of ARMS, highlighting
the significance of accurate aerosol representation in these datasets. For studies at the local
or regional level, these results provide guidance for selecting the most suitable data source.
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In the case of global studies, despite differences in the statistical characteristics of both
aerosol products, they are both regarded as appropriate for use [59].

4. Result Analysis
4.1. Sensitivity of Simulated BT to Total Aerosol

This section presents a comparative analysis of the GIIRS-observed BT and the ex-
perimental results from the CAMS and MERRA-2 datasets, with a particular focus on
evaluating the OMB bias. The objective of this study is to assess the improvements in the
OMB bias achieved by incorporating aerosol data from the CAMS and MERRA-2 into the
ARMS model and to further investigate the impact of different aerosol types on BT simu-
lations. By comparing the results of the three experiments, this analysis provides deeper
insights into the role of aerosols in atmospheric radiation processes and their influence on
observational data.

1.  Asshown in Figure 6a, both CTRL_CAMS (black line) and CTRL_MERRA-2 (green
line) display negative biases across all long-wave infrared channels of the GIIRS,
with the CAMS containing 4209 points and the MERRA-2 containing 7500 points.
The average OMB bias for CTRL_CAMS is —0.94 K, while for CTRL_MERRA-2 it
is —0.96 K, with the values being very close. The maximum bias occurs in channel
679 (1105 cm 1), reaching —2.17 K. The errors in the ERA5 atmospheric and surface
data can indeed affect the BT simulation results from ARMS [60,61]. However, in
regions affected by dust storms and other areas with high concentrations of coarse
aerosol particles, the errors introduced in the BT simulations are relatively small. For
example, Niu et al. [62] used ERA5 atmospheric and surface data as input parameters
for RTTOV to simulate the BT of FY-4B/the GIIRS under clear-sky conditions. Their
results showed that the error range was between 0 and 1 K, which is consistent with
the CTRL_CAMS and CTRL_MERRA-2 results presented in Figure 6a of this study;

2. After incorporating total aerosols (including dust, sea salt, sulfate, and carbonate) into
ARMS, the OMB biases for AER_CAMS and AER_MERRA-2 show improvements
compared to the CTRL experiment. Figure 6b presents the simulated BTD, which
illustrates the difference in BT simulations between the total aerosols (AER) and no
aerosols (CTRL) in ARMS. Negative BTD values indicate a cooling effect, suggest-
ing that aerosols lead to a decrease in the BT in long-wave infrared channels. The
improvement is especially pronounced in the window region between channels 750
cm~! and 1130 cm~!. AER_MERRA-2 shows an average improvement of 0.56 K
compared to AER_CTRL, while AER_CAMS shows a smaller improvement of 0.11 K
compared to CAMS_CTRL. These results clearly indicate that incorporating aerosol
data from the MERRA-2 into ARMS yields a more significant improvement than using
the CAMS data;

3. To more clearly illustrate the correlation between regions of OMB improvement and
areas with a higher aerosol column mass density, the aerosol activity over ocean grid
points is used, as it provides a valuable opportunity for comparison, enabling an
in-depth analysis of the differences in OMB bias. This analysis includes 7500 points
from the MERRA-2 and data from the CAMS. Figure 7 focuses on the window channel
at 990 cm~!, which shows significant OMB improvement, thereby helping to more ac-
curately reveal the impact of aerosols on the OMB bias. Figure 7a,b display the spatial
distribution of the OMB bias for the 990 cm~! channel from the CTRL experiment,
while Figure 7e,f show the bias between OMB_AER and OMB_CTRL. It is evident that
regions influenced by dust storms, such as the Bohai Sea, Bohai Strait, and Japan Sea,
exhibit larger average OMB bias values, reaching —1.11 K. Figure 7c,d show the spatial
distribution of OMB biases after incorporating the total aerosols for both the CAMS
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and MERRA-2. In regions with higher aerosol column mass density, as illustrated
in Figure 5, particularly in areas with frequent aerosol activity, the OMB negative
values are relatively larger. This suggests that the BT simulations in these areas may
be overestimated. In the Bohai Sea, Bohai Strait, and Japan Sea regions, the OMB
biases were improved to varying degrees. The regions of improvement correspond
exactly to the areas of high aerosol column mass density shown in Figure 5a,b. For
AER_CAMS, the average OMB improvement in these areas is 0.2 K, with the largest
improvement occurring near the coast of the Bohai Sea, where the OMB bias decreased
from —2.51 K to —0.12 K, a maximum improvement of 2.63 K. However, in a small
part of the Bohai Sea near the coast, the OMB bias increased from —1 K to 1.2 K after
the incorporation of aerosols, showing an increase in bias. This may be due to the
overestimation of the total aerosol column mass density by the CAMS in this region,
which led to slight errors in the BT simulation in ARMS. Except for the areas affected
by dust storms, the improvements in other regions are not as significant. After the
incorporation of aerosols, the MERRA-2 shows an average improvement of 0.57 K in
the OMB biases, with the largest improvement occurring in the Bohai Strait, where
the OMB bias decreases from —3.42 K to —0.4 K, reaching a maximum improvement
of 3 K. This improvement corresponds to regions of high aerosol column mass density
in the MERRA-2 data, as seen in Figure 5b. Additionally, the areas of improvement
for the MERRA-2 data also extend to the South China Sea, Yellow Sea, East China Sea,
and southern Bay of Bengal. The above results suggest that there are discrepancies in
the regions of high aerosol column mass density between the MERRA-2 and CAMS
datasets, leading to differences in the maximum OMB bias improvements that were
observed. Overall, the aerosol improvement effect is more significant in the MERRA-2
data compared to those of the CAMS. However, after incorporating the total aerosols,
the MERRA-2 data show an increase in OMB bias in some small areas of the South
China Sea compared to CTRL, and even a bias as large as 2 K in the northern part of
the Bay of Bengal. In contrast, the CAMS does not exhibit such an outcome after the
inclusion of aerosol data. The detailed causes of this result will be further investigated
in subsequent studies focusing on the column mass densities of different aerosol types
and the peak aerosol layers.
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Figure 6. (a) Comparison of OMB biases between the CTRL and AER experiments in the
6801130 cm ! region for GIIRS from CAMS and MERRA-2. The AER experiment includes all
aerosol types (dust, sea salt, sulfates, and carbonaceous aerosols). The selected region for calculation
focuses on areas significantly affected by dust storms, such as the Bohai Sea and the Japan Sea.
(b) BTD between AER_CAMS, AER_MERRA, and CTRL in the 680-1130 cm™! region for GIIRS.
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Figure 7. Spatial distribution of the CTRL experiment for CAMS (a) and MERRA-2 (b), and the OMB
bias results of the AER experiment for CAMS (c) and MERRA-2 (d) at the 990 cm~! channel on 10 April
2023. Panels (e,f) show the biases of OMB relative to CTRL for CAMS and MERRA-2, respectively.

4.2. Sensitivity of Simulated BT to Four Aerosol Types

To relate the above results to aerosol types and investigate the radiative effects of
different aerosol species, this study conducted four independent experiments using the
CAMS and MERRA-2 aerosol datasets. In each experiment, ARMS considered only one
aerosol type at a time, including dust, sea salt, sulfate, and carbonaceous aerosols. Ad-
ditionally, the average OMB bias and BTD between the CTRL experiment and the single
aerosol experiments were analyzed. To better highlight the improvement effects of different
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aerosol types, the OMB and BTD calculations in Figures 8 and 9 are based on the high-value
regions corresponding to each aerosol type. The results are shown in Figures 8 and 9.
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Figure 8. Comparison of OMB bias between the CTRL and AER experiments in the 680-1130 cm ™!
region for GIIRS, including the contributions of four aerosol types: (a) dust, (b) sea salt, (c) sulfates,
and (d) carbonaceous. The calculation regions are averaged within the respective high-quality aerosol
density regions for the four aerosol types from both the CAMS and MERRA-2, highlighting the areas
with significant aerosol presence for each type.
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Figure 9. Comparison of BTD between the CTRL and AER experiments in the 680-1130 cm ™! region
for GIIRS, including the contributions of four aerosol types: (a) dust, (b) sea salt, (c) sulfates, and
(d) carbonaceous aerosols. The calculation regions are averaged within the respective high-quality
aerosol density regions for the four aerosol types from both the CAMS and MERRA-2, highlighting
the areas with significant aerosol presence for each type.
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As shown in Figure 8a, after incorporating dust in ARMS, the MERRA-2 dataset’s
dust led to an average BT decrease of 0.28 K, while the CAMS data caused a decrease of
0.06 K. The average OMB improvements were 0.06 K for the CAMS and 0.34 K for the
MERRA-2. The improvement in the MERRA-2 dataset is more significant than that in the
CAMS, which can be attributed to the larger coverage area of dust in the MERRA-2 data
compared to the CAMS data. Figure 8b shows that, in the high-value region for sea salt,
the average OMB bias improvement for the CAMS and MERRA-2 is 0.02 K and 0.24 K,
respectively, with the MERRA-2 showing a greater improvement than the CAMS. As seen
in Figure 8c,d, the improvements after incorporating sulfate and carbonaceous aerosols in
the MERRA-2 data are more pronounced than in the CAMS data. Specifically, the average
OMB bias improvements for sulfate are 0.13 K for the MERRA-2 and 0.06 K for the CAMS,
while for carbonaceous aerosols, the improvements are 0.31 K for the MERRA-2 and 0.03 K
for the CAMS.

A comprehensive analysis of the results for different aerosol types shows that the
dust aerosol datasets from both the CAMS and MERRA-2 have the largest impact on BT
simulations in the infrared window region, exhibiting the strongest cooling effect and
the most significant improvement. This is primarily because dust aerosols have larger
particle sizes and columnar mass densities compared to other aerosol types, allowing them
to block a portion of the radiation emitted from the Earth’s surface. For other aerosol
types, their impact on BT simulations is more limited due to their relatively smaller particle
sizes and extinction coefficients. The improvement effect is largest for sea salt, followed
by that for sulfate, and the smallest effect is seen for carbonaceous aerosols. However,
there are some exceptions where the inclusion of aerosols does not always improve the
OMB bias. For example, the improvement in the CO, channel is not significant, possibly
because the channels affected by aerosols are mainly concentrated in the infrared window
region. Furthermore, the improvements observed in the four MERRA-2 experiments are
consistently better than those in the CAMS experiment.

Figure 10 illustrates the correspondence between the regions of improvement for
dust aerosols in the CAMS and MERRA-2 and the areas of high aerosol column mass
density. The aerosol activity over ocean grid points provides an excellent opportunity
to compare the differences in OMB bias. Here, the window channel at 990 cm~— ! which
shows significant improvement in the OMB bias, is chosen as a representative example.
Specifically, the dust aerosol is analyzed in the region affected by the dust storm, 27—45°N
and 118-135°E.

Figure 10a,b show that the pixels near the land areas of the Bohai Sea, the northwest-
ern part of the Yellow Sea near the land, and the northwestern part of the Japan Sea near
the northern Japanese land all exhibit a lower observed BT from the GIIRS. As shown in
Figure 3, this decrease in observed BT is attributed to the influence of dust storms. In con-
trast, Figure 10c,d show that, under clear-sky conditions and without aerosols in the ARMS,
the simulated BT in dust-affected regions is warmer compared to the observed BT. This is
because dust aerosols have strong absorption and scattering effects, especially during dust
storms, where aerosols lead to cooling of the surface and atmosphere. Since the model does
not account for this aerosol effect, the simulated BT in the dust-affected regions tends to be
higher than the actual observed values. Figure 10e,f show that, after incorporating aerosols
into the ARMS, the simulated BT in dust-impacted regions decreases, aligning more closely
with the observed BT, particularly with that of the MERRA-2 reanalysis data. However,
the CAMS slightly overestimates the dust aerosol mass density in certain pixels near the
Bohai Sea, leading to an underestimation of the simulated BT in these areas. Figure 10kl
show that, in areas impacted by dust storms, the average OMB bias improvement for the
dust aerosols in the CAMS and MERRA-2 is 0.1 K and 0.37 K, respectively, with maximum
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improvements of 2.54 K and 2.76 K. Compared to the CTRL, the standard deviation de-
creases by 0.01 and 0.03, respectively, corresponding to the regions of high dust column
mass density shown in Figure 5c,d. However, along the coastal edge of the Bohai Sea,
the MERRA-2 shows larger discrepancies, which could be due to the overestimation of
the dust aerosol mass density in this region, leading to an underestimation of the BT ine
simulation. Despite the CAMS overestimating in the coastal areas near the Bohai Sea,
it underestimates the aerosol column mass density of dust in the central Bohai Sea, the
Yellow Sea, and the northwest part of the Sea of Japan. This is consistent with the findings
from Ukhov et al. [54] and Cuevas et al. [63], who evaluated the MERRA-2 and CAMS
reanalysis data and found that the MERRA-2 overestimated the PM10 by approximately
1.2 times, while the CAMS underestimated the PM10 by about 1.5 times on an annual
average, with dust aerosols being the major component of PM10. Additionally, compared
to the AERONET aerosol volume size distribution, the CAMS underestimated the volume
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improvements in the average OMB bias compared to the MERRA-2.
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Figure 10. (a,b) show the observed BT from FY-4B/GIIRS level 1. (¢,d) display simulated BT under
clear sky without aerosols. (e,f) present simulated BT with dust aerosols from CAMS and MERRA-2.
(g,j) illustrate the OMB comparison between the aerosol experiments and the CTRL experiment for
both datasets. (k,1) show the bias between OMB and CTRL after incorporating dust aerosols from
CAMS and MERRA-2. The red-bordered areas highlight regions affected by dust storms, where
significant improvements in OMB are observed. All panels focus on high column mass density
regions for the dust aerosol at the 990 cm~! channel on 10 April 2023.
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To further explain the differences in OMB bias improvements after the inclusion of
different aerosol types in the MERRA-2 and CAMS, Figure 11 plots the vertical average
profiles of the aerosol column mass density for the high column mass density regions
corresponding to various aerosol types in the MERRA-2 and CAMS, as included in ARMS.
Figure 11b,d show the average aerosol mass density profiles across all aerosol layers within
the high column mass density regions in the dust areas. It is apparent that there are
differences in the altitude of the peak dust layer between the CAMS and MERRA-2. In
the CAMS, the peak dust layer is located at 750 hPa, whereas in the MERRA-2, it is at
680 hPa, with the MERRA-2’s peak dust layer being at a higher altitude compared to that
of the CAMS. In terms of sensitivity to the peak dust layer height, the magnitude of the
BT cooling effect decreases as the peak layer altitude lowers. A lower peak height results
in a warmer BT, which leads to a smaller OMB improvement. Additionally, the aerosol
peak load in the MERRA-2 is greater than that in the CAMS. This is partly due to its thicker
aerosol layer, which can block more infrared radiation emitted from the layers below the
dust peak. [26]. The MERRA-2 has broader dust coverage, and its peak dust layer is higher
and thicker and has a higher column mass density, resulting in more significant OMB bias
improvements than the CAMS.
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Figure 11. The aerosol mass density profiles, averaged within their respective high-quality density
regions for the four aerosol types from CAMS and MERRA-2, are compared in the following panels:
(a,b) dust region, (c,d) sea salt region, (e,f) sulfate region, and (g,h) carbonaceous region.

Since the regions of high aerosol column mass density differ for different aerosols, it
is necessary to analyze the average OMB bias for each specific high column mass density
region. In addition to the regions impacted by dust storms, this study also analyzed the
OMB bias in the high column mass density areas of other aerosol types. Specifically, the sea
salt aerosol is analyzed in the region of 4-23°N, 100-118°E; sulfate in the region of 3-45°N,
85-126°E; and carbonaceous aerosol in the region of 5-23°N, 101-118°E.

As shown in Figure 5e,f, along with Figures 12a-d and 13a,b, the column mass density
of sea salt aerosols is relatively higher in the South China Sea and the Gulf of Thailand. The
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maximum OMB improvements in these areas for the CAMS and MERRA-2 were 0.06 K and
0.36 K, respectively. Although Figure 5e,f show that the maximum column mass density
of sea salt in the CAMS data is twice that of the MERRA-2 data, the column mass density
of sea salt aerosols in the MERRA-2 data is greater than in the CAMS data in most of the
South China Sea and Gulf of Thailand regions. This is due to the CAMS underestimating
the volume of coarse sea salt particles with radii between 9-20 um [54], leading to better
BT simulation results in the MERRA-2, which are closer to the GIIRS-observed BT and thus
exhibit superior improvements in OMB bias. Based on the analysis of Figure 11¢,d, the peak
altitude of sea salt in the MERRA-2 data is primarily located at 1000 hPa, with a column
mass density of 8 x 107 kg/m?, indicating a higher column mass density of sea salt near
the ocean surface. In contrast, the peak layer in the CAMS data is found at 870 hPa, with a

maximum column mass density of 3.4 x 107 kg/m?, reflecting a relatively lower column

mass density of sea salt aerosols near the surface. Although the peak aerosol layer in the

CAMS data is positioned at a higher altitude than in the MERRA-2 data, the mass loading

at the peak is smaller in the CAMS data. Consequently, the MERRA-2 demonstrates better
OMB improvements.
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Figure 12. Spatial comparison of OMB between the aerosol experiments and the CTRL experiment
for CAMS and MERRA-2, focusing on high column mass density regions of the other three aerosol

types at the 990 cm~! channel on 10 April 2023: (a-d) sea salt region, (e-h) sulfate region, and
(i-1) carbonaceous region.
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Figure 13. Bias between OMB and CTRL after incorporating different aerosol types from MERRA-2
and CAMS. (a,b) Sea salt, (c,d) sulfate, (e f) carbonaceous aerosols.

For sulfate aerosols, the primary areas of improvement are the Yellow Sea and Bay of
Bengal. As shown in Figures 12e-h and 13c,d, the MERRA-2 shows better performance than
the CAMS in the Yellow Sea and southern Bay of Bengal, with an average improvement
of 0.01 K. However, in the northern Bay of Bengal, negative improvement is observed, as
shown in Figure 5g,h. The MERRA-2 overestimates the sulfate column mass density in
this region compared to the CAMS, leading to excessively low BT simulations and larger
OMB biases when considering sulfate aerosols in ARMS. The CAMS performs better in
the northern Bay of Bengal, whereas, in the Yellow Sea, which is affected by dust storms,
the MERRA-2 shows a higher sulfate column mass density than the CAMS. The CAMS
underestimates the sulfate aerosol mass in this region; thus, the MERRA-2 demonstrates
better OMB improvement than the CAMS. This is consistent with the findings of Huang
et al. in their studies on long-range dust transport events in 2018 and 2020, where the
CAMS underestimated sulfate aerosol concentrations compared to actual observations [64].

In the Gulf of Thailand, as shown in Figures 12i-1 and 13e,f, the MERRA-2 exhibits
more pronounced improvements for carbonaceous aerosols compared to the CAMS, at-
tributed to its higher and broader column mass density distribution. Figure 11g/h further
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show that, while the peak layers of carbonaceous aerosols are consistent between the
datasets, the MERRA-2’s aerosol column mass density at the peak is four times greater than
in the CAMS, resulting in superior performance.

5. Discussion and Conclusions

Accurate aerosol measurements are crucial for the precision of BT simulations. There-
fore, this study incorporates different aerosol reanalysis datasets into ARMS to compare
their effects on FY-4B/the GIIRS BT simulations and improvements in OMB biases. Three
experiments were designed: experiment 1 was a baseline reference experiment conducted
without incorporating aerosol, while experiments 2 and 3 included aerosol data from the
MERRA-2 and CAMS, respectively, to compare and quantitatively evaluate their effects on
BT simulations. Additionally, the experiments further compared and analyzed the impact
of different aerosol types from the MERRA-2 and CAMS on BT simulations. The main
conclusions are as follows.

After incorporating all aerosol types (dust, sea salt, sulfate, and carbonates) into the
MERRA-2, the average improvement (0.56 K) was significantly higher than that of the
CAMS (0.11 K), with the most notable improvements observed in the long-wave infrared
window channels between 750 cm ! and 1130 cm ™. Significant OMB improvements were
found in regions with a high aerosol mass density, especially around the Bohai Sea, Bohai
Strait, and Sea of Japan. While the MERRA-2 outperformed the CAMS in many areas,
it showed larger biases (up to 2 K) in certain regions, such as small areas of the South
China Sea and the northern Bay of Bengal, where the CAMS did not exhibit similar large
OMB biases.

Dust aerosols have the most significant impact on BT simulations. After incorporating
the MERRA-2 dust aerosols, the OMB bias improvement (with an average improvement of
0.17 K) was superior to that of the CAMS (with an average improvement of 0.06 K). Due to
their larger particle size and higher column mass density, dust aerosols block more infrared
radiation emitted upwards from the surface, exhibiting the strongest cooling effect, which
reaches up to 0.35 K. For other aerosol types, the impact on BT simulations is more limited,
likely due to their relatively smaller particle sizes and extinction coefficients. Overall,
dust aerosols, with their larger particle sizes and higher column mass densities, have the
strongest radiative impact, and the MERRA-2 consistently outperforms the CAMS in terms
of improvement across all aerosol types.

The difference in the peak aerosol level, aerosol thickness, and column mass density
significantly influences the OMB improvement. Specifically, the peak altitude of the dust
layer in the MERRA-2 dataset is at a higher altitude (680 hPa) compared to that of the
CAMS (750 hPa). Due to its higher column mass density, greater aerosol layer thickness,
and broader spatial coverage, the MERRA-2 results in a more substantial improvement in
the OMB bias in dust regions, with an average improvement of 0.37 K and a maximum of
2.76 K. In comparison, the CAMS shows an average improvement of 0.1 K and a maximum
of 2.54 K. For other aerosol types, the regions of improvement for sea salt and carbonates are
mainly observed in the South China Sea and the Bay of Bengal, respectively. However, the
MERRA-2 also shows better performance in these areas compared to the CAMS. Regarding
sulfate aerosols, the MERRA-2 performs better in the Bohai Strait and southern Bay of
Bengal, while the CAMS shows superior results in the northern Bay of Bengal.

These findings provide valuable guidance for local or regional studies, particularly in
selecting the most suitable data source. For regions frequently affected by dust storms, the
MERRA-2 demonstrates clear advantages, offering a more accurate capture of aerosol char-
acteristics and significantly improving BT simulations. In contrast, for regions involving
multiple aerosol types (such as sea salt, sulfate, and carbonaceous aerosols), both the CAMS
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and MERRA-2 have their respective strengths. Therefore, when choosing the appropriate
data source, researchers should carefully balance the specific requirements of their studies.

On a global scale, despite differences in the statistical characteristics of aerosol sim-
ulations from the CAMS and MERRA-2, both datasets are considered suitable for use,
particularly in global climate studies or atmospheric composition analyses. Given the
differences in performance for various aerosol types (e.g., dust, sea salt, sulfate, and car-
bonaceous aerosols), combining the strengths of both datasets could further enhance the
accuracy of BT simulation.

These key findings offer important insights for aerosol assimilation and retrieval
studies, especially concerning quality control and bias correction methods in aerosol data
assimilation. If observational data under conditions such as haze or dust storms are assimi-
lated as clear-sky observations (i.e., neglecting aerosol effects), this may lead to significant
OMB biases in BT simulations. Additionally, BT simulations influenced by aerosols may
introduce biases into the RTM used in physics-based inversion methods, thereby compro-
mising the accuracy and reliability of atmospheric temperature and humidity retrievals.
Furthermore, this study reveals the quantitative relationships between the aerosol column
mass density, the peak aerosol concentration, and BT simulations, providing a scientific
basis for optimizing the sensitivity of retrieval algorithms to aerosol radiative effects. As
such, this work not only offers guidance for future aerosol assimilation and retrieval studies
through the use of accurate aerosol datasets, but also lays the foundation for integrating
aerosol radiative properties into NWP systems.
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ARMS Advanced Radiative Transfer Modeling System
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ARIES Airborne Research Interferometer Evaluation System
BT Brightness Temperature

CAMS Copernicus Atmosphere Monitoring Service

ERA5 the fifth generation ECMWF atmospheric reanalysis
ECMWEF European Centre for Medium-Range Weather Forecasts
FOR Field of Regard

GSI Gridpoint Statistical Interpolation

GEOS-5 Goddard Earth Observing System, Version 5

MODIS Moderate Resolution Imaging Spectroradiometer
MISR Multi-angle Imaging Spectroradiometer

NWP Numerical Weather Prediction

NOAA National Oceanic and Atmospheric Administration
OMB Observation Minus Background

RTM Radiative Transfer Model

VIIRS Visible Infrared Imaging Radiometer Suite
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